HZS50/75A

L LIUGONG

CONCRETE BATCH PLANT

TOUGH WORLD. TOUGH EQUIPMENT.

HZS50/75A
 SPECIFICATIONS >>>

BUILT FOR EFFICIENGY

Specially designed for on-site projects, minimizes the installation period and easy to be moved from one site to another.
Unlike those ready-mix plants, the on-site type requires less space to fit the other machines used and makes sure the period commitment available.

Twin shaft compulsory mixer and all materials are being measured by sensors ensure highest quality concrete.

EASY TO MAINTAIN

Convenient placement of key maintenance points. Parts, service and attachments you can count on.

ALWAYS RELABLE

World class components used for key systems.
4 layers of seal prevent leaks. Blade, lining board and mixing arms made of highly wear resistant chromium alloy.
Fine and coarse scales are available to ensure the aggregate measuring accuracy.

OPERATOR SAFETY AND COMFORT

On ground design to avoid water collection under the aggregate batcher in rain seasons.
Operator oriented information display allows the operator to timely monitor the whole production process.
The mixing process can be controlled both automatically and manually, this allows the operator to choose the manual mode temporarily if any trouble occurs.

Model	HZS50A	HZS75A
Productivity $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	50	75
Cycle period (s)	60	60
Mixer	JS1000	JS1500
Mixer Capacity (L)	1000	1500
Silos (t)	2×50 $(o p t i o n a l)$	1×50 $(\mathrm{optional})$
Aggregate Hoppers (m$\left.{ }^{3}\right)$	3×3.8	3×10
Concrete Discharge Height (m)	3.8	3.8
Total Power Consumption (kW)	100	130
Aggregate Measuring Accuracy	$\pm 2 \%$	$\pm 2 \%$
Cement Measuring Accuracy	$\pm 1 \%$	$\pm 1 \%$
Fly-Ash Measuring Accuracy	$\pm 1 \%$	$\pm 1 \%$
Water Measuring Accuracy	$\pm 1 \%$	$\pm 1 \%$
Additive Measuring Accuracy	$\pm 1 \%$	$\pm 1 \%$

